#+TITLE: GTK-3 Simple opengl app with touch events #+DATE: 2014-06-10 12:00:00 UTC #+DESCRIPTION: Example application mixing gtk, opengl and touch, written as a demo but also as an opengl testing enviroment. #+FILETAGS: GTK-3:python:widgets:touchscreen:opengl #+CATEGORY: python #+SLUG: 15-gtk3-opengl-touch-events #+THUMBNAIL: ../../../images/gtk/tut14-touchscreen-events.png #+BEGIN_COMMENT .. title: GTK-3 Simple opengl app with touch events .. slug: 15-gtk3-opengl-touch-events .. date: 2014-06-10 12:00:00 UTC .. tags: GTK-3, python, widgets, touchscreen, opengl .. category: python .. description: Example application mixing gtk, opengl and touch, written as a demo but also as an opengl testing enviroment. .. type: text #+END_COMMENT #+CAPTION: Opengl touch events [[../../../images/gtk/tut14-touchscreen-events.png]] This is a much more complicated example which mashes some of the previous examples together, I have written it as an example but also to test out shaders and different pipelines to get better opengl performance. Hopefully this example will help you get started writing awesome touch based apps with gtk, if anything is unclear let me know in the comments below. [[http://bazaar.launchpad.net/~oly/python-examples/trunk/files/head:/python-examples/gtk3/][OpenGL in a drawing area]] [[http://bazaar.launchpad.net/~oly/python-examples/trunk/files/head:/python-examples/gtk3/][Touch screen events]] #+BEGIN_SRC python :tangle 15-gtk3-opengl-touch-events.py #!/usr/bin/env python import sys import time import random import pprint import Xlib from Xlib.display import Display from gi.repository import Gtk, Gdk, GdkX11, GLib, GObject from ctypes import * from numpy import array from OpenGL.GL import * from OpenGL.GL import shaders from OpenGL.GLU import gluPerspective, gluLookAt from OpenGL.arrays import vbo from OpenGL import GLX try: from OpenGL.GLX import struct__XDisplay except ImportError as err: from OpenGL.raw._GLX import struct__XDisplay from OpenGL.GL import GL_VERTEX_SHADER, GL_FRAGMENT_SHADER from OpenGL.GL import shaders, glGetUniformLocation from helper import shader from helper import cube as createcube class gtkgl: """ these method do not seem to exist in python x11 library lets exploit the c methods useful link http://www.opengl.org/wiki/Programming_OpenGL_in_Linux:_GLX_and_Xlib""" xlib = cdll.LoadLibrary('libX11.so') xlib.XOpenDisplay.argtypes = [c_char_p] xlib.XOpenDisplay.restype = POINTER(struct__XDisplay) xdisplay = xlib.XOpenDisplay(None) display = Xlib.display.Display() attrs = [] xwindow_id = None width = height = 500 def __init__(self): """ lets setup are opengl settings and create the context for our window """ self.add_attribute(GLX.GLX_RGBA, True) self.add_attribute(GLX.GLX_RED_SIZE, 8) self.add_attribute(GLX.GLX_GREEN_SIZE, 8) self.add_attribute(GLX.GLX_BLUE_SIZE, 8) self.add_attribute(GLX.GLX_DOUBLEBUFFER, 1) self.add_attribute(GLX.GLX_DEPTH_SIZE, 24) xvinfo = GLX.glXChooseVisual(self.xdisplay, self.display.get_default_screen(), self.get_attributes()) print("run glxinfo to match this visual id %s " % hex(xvinfo.contents.visualid)) self.context = GLX.glXCreateContext(self.xdisplay, xvinfo, None, True) def add_attribute(self, setting, value): """just to nicely add opengl parameters""" self.attrs.append(setting) self.attrs.append(value) def get_attributes(self): """ return our parameters in the expected structure""" attrs = self.attrs + [0, 0] return (c_int * len(attrs))(*attrs) def configure(self, wid): """ """ self.xwindow_id = GdkX11.X11Window.get_xid(wid) if(not GLX.glXMakeCurrent(self.xdisplay, self.xwindow_id, self.context)): print ('failed configuring context') glViewport(0, 0, self.width, self.height) def draw_start(self): """make cairo context current for drawing""" if(not GLX.glXMakeCurrent(self.xdisplay, self.xwindow_id, self.context)): print ("failed to get the context for drawing") def draw_finish(self): """swap buffer when we have finished drawing""" GLX.glXSwapBuffers(self.xdisplay, self.xwindow_id) class scene: width, height = 600, 600 rotationx = 0.0 rotationy = 0.0 rotation_incx = 0.5 rotation_incy = 0.5 radius = 0 touch_count = 0 touch_previous = 0, 0 touch_start_one = 0, 0 touch_start_two = 0, 0 touch_end_one = 0, 0 touch_end_two = 0, 0 touch_time = 0 camera_distance = 25 cube_length = 1.0 cube_size = cube_length / 2 def __init__(self): """setup everything in the correct order""" self.glwrap = gtkgl() self.setup_opengl() self.generate() self.gui() self.mode = 'vbo all cubes' def gui(self): """load in the gui and connect the events and set our properties""" self.start_time = time.time() self.frame = 1 xml = Gtk.Builder() xml.add_from_file('gui.glade') self.window = xml.get_object('window1') self.mode_widget = xml.get_object('cmbmode') self.mode_widget.connect('changed', self.change_mode) self.rotate_widget = xml.get_object('spinrotate') self.rotate_widget.connect('value-changed', self.change_rotate_speed) self.radius_widget = xml.get_object('spinradius') self.radius_widget.connect('value-changed', self.change_radius) self.color_widget = xml.get_object('btncolor') self.color_widget.connect('clicked', self.change_color) self.canvas_widget = xml.get_object('canvas') self.canvas_widget.connect('configure_event', self.on_configure_event) self.canvas_widget.connect('draw', self.on_draw) self.canvas_widget.set_double_buffered(False) self.canvas_widget.set_size_request(self.glwrap.width, self.glwrap.height) self.canvas_widget.add_events(Gdk.EventMask.TOUCH_MASK) self.canvas_widget.connect('touch-event', self.touched) self.window.show_all() GObject.idle_add(self.loop_draw) def touched(self, widget, ev): """basic touch support, count the touches so we no how many fingers basic pinc zoom along the x, single finger slide to rotate""" if ev.get_source_device().get_source() == Gdk.InputSource.TOUCHSCREEN: if ev.touch.type == Gdk.EventType.TOUCH_BEGIN: self.touch_start = ev.touch.x, ev.touch.y self.touch_count += 1 if self.touch_count == 2: self.touch_start_two = ev.touch.x, ev.touch.y self.touch_previous = ev.touch.x, ev.touch.y if ev.touch.type == Gdk.EventType.TOUCH_UPDATE: if ev.touch.time - self.touch_time < 100: return True if self.touch_count == 2: #basic pinch zoom along the x axis d1 = self.touch_previous[0] - ev.touch.x if d1 > 1: self.camera_distance += self.camera_distance * 0.05 self.touch_previous = ev.touch.x, ev.touch.y if d1 < 1: self.camera_distance -= self.camera_distance * 0.05 self.touch_previous = ev.touch.x, ev.touch.y self.update_camera() self.touch_time = ev.touch.time if ev.touch.type == Gdk.EventType.TOUCH_END: self.touch_end = ev.touch.x, ev.touch.y #set rotation when touch ends if self.touch_count == 1: self.rotation_incx = (self.touch_start[0] - self.touch_end[0]) * 0.01 self.rotation_incy = (self.touch_start[1] - self.touch_end[1]) * 0.01 self.touch_count = 0 def in_circle(self, center_x, center_y, center_z, radius, x, y, z): """ test if our cordinate lies inside our sphere""" square_dist = (center_x - x) ** 2 + (center_y - y) ** 2 + (center_z - z) ** 2 return square_dist <= radius ** 2 def change_color(self, widget): #regenerate the scene self.generate() def change_mode(self, widget): #change whats drawn and how self.mode = widget.get_active_text().lower() print(widget.get_active_text()) def change_rotate_speed(self, widget): #handle spinner rotation speed event self.rotation_incx = widget.get_value() self.rotation_incy = widget.get_value() def change_radius(self, widget): #increase size of circle and number of polygons self.radius = int(widget.get_value()) self.generate() def loop_draw(self): #send redraw event to drawing area widget self.canvas_widget.queue_draw() return True def on_configure_event(self, widget, event): """if we recieve a configure event for example a resize, then grab the context settings and resize our scene """ self.glwrap.width = widget.get_allocation().width self.glwrap.height = widget.get_allocation().height self.width, self.height = self.glwrap.width, self.glwrap.height #update our states because we have reconfigured the display self.glwrap.configure(widget.get_window()) self.glwrap.draw_start() self.update_camera() self.setup_shaders() glEnable(GL_DEPTH_TEST) glDepthMask(GL_TRUE) glDepthFunc(GL_LEQUAL) glDepthRange(0.0, 1.0) glEnable(GL_CULL_FACE) glCullFace(GL_BACK) glFrontFace(GL_CW) self.glwrap.draw_finish() return True def on_draw(self, widget, context): """if we recieve a draw event redraw our opengl scene""" self.elapsed_time = time.time() - self.start_time self.frame += 1 if self.elapsed_time > 1: print('fps %d' % self.frame) self.start_time = time.time() self.frame = 1 self.glwrap.draw_start() self.draw() self.glwrap.draw_finish() def generate(self): self.cubes = [] #position cubes inside a sphere radius for shift_x in range(-self.radius, self.radius + 1): for shift_y in range(-self.radius, self.radius + 1): for shift_z in range(-self.radius, self.radius + 1): x = shift_x * self.cube_length y = shift_y * self.cube_length z = shift_z * self.cube_length if not self.in_circle(0, 0, 0, self.radius, x, y, z): continue #random colours / textures if we want color = random.choice([0.85, 0.15]), random.choice([0.85, 0.15]), random.choice([0.85, 0.15]) self.cubes.append(createcube((x, y, z), color, self.cube_size)) self.test_cube = createcube((x, y, z), (random.choice([0.85, 0.15]), random.choice([0.85, 0.15]), random.choice([0.85, 0.15])), 6) faces = [] for cube in self.cubes: faces += cube.get_data() print('Generated %s Cubes' % str(len(self.cubes))) print('Generated %s Tringles' % str(len(faces) / 3)) self.vbuffer = vbo.VBO(array(faces, 'f')) def setup_shaders(self): self.shader_program = shader() self.shader_program.compile() def setup_opengl(self): glShadeModel(GL_SMOOTH) glClearColor(0.0, 0.0, 0.0, 0.0) glClearDepth(1.0) glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST) glPolygonMode(GL_FRONT, GL_FILL) def update_camera(self): glViewport(0, 0, self.width, self.height) glMatrixMode(GL_PROJECTION) glLoadIdentity() gluPerspective(45, 1.0 * self.width / self.height, 1.0, 80.0) gluLookAt(self.camera_distance, self.camera_distance, self.camera_distance, # location 0.0, 0.0, 0.0, # lookat 0.0, 1.0, 0.0) # up direction glMatrixMode(GL_MODELVIEW) glLoadIdentity() def draw_test(self): #lets do a simple rotation so we can see the objects are 3d glRotatef(self.rotationx, 1.0, 0.0, 0.0) self.rotationx += self.rotation_incx glRotatef(self.rotationy, 0.0, 1.0, 0.0) self.rotationy += self.rotation_incy #use our shader program and enable vertex loading glUseProgram(self.shader_program.program) glEnableClientState(GL_VERTEX_ARRAY) glEnableClientState(GL_COLOR_ARRAY) #render the triangles into a virtual buffer object self.test_cube.bind() glVertexPointer(3, GL_FLOAT, 24, self.test_cube.vbuffer) glColorPointer(3, GL_FLOAT, 24, self.test_cube.vbuffer + 12) glDrawArrays(GL_TRIANGLES, 0, self.test_cube.vbuffer_size) self.test_cube.unbind() #restore opengl to our previous state glDisableClientState(GL_COLOR_ARRAY) glDisableClientState(GL_VERTEX_ARRAY) shaders.glUseProgram(0) def draw_vbo_per_cube(self): #lets do a simple rotation so we can see the objects are 3d glRotatef(self.rotationx, 1.0, 0.0, 0.0) self.rotationx += self.rotation_incx glRotatef(self.rotationy, 0.0, 1.0, 0.0) self.rotationy += self.rotation_incy # use our shader program and enable vertex loading glUseProgram(self.shader_program.program) glEnableClientState(GL_VERTEX_ARRAY) glEnableClientState(GL_COLOR_ARRAY) # render the triangles into a virtual buffer object for shape in self.cubes: shape.bind() glVertexPointer(3, GL_FLOAT, 24, shape.vbuffer) glColorPointer(3, GL_FLOAT, 24, shape.vbuffer + 12) glDrawArrays(GL_TRIANGLES, 0, shape.vbuffer_size) shape.unbind() #restore opengl to our previous state glDisableClientState(GL_COLOR_ARRAY) glDisableClientState(GL_VERTEX_ARRAY) shaders.glUseProgram(0) def draw_vbo_all_cubes(self): #lets do a simple rotation so we can see the objects are 3d glRotatef(self.rotationx, 1.0, 0.0, 0.0) self.rotationx += self.rotation_incx glRotatef(self.rotationy, 0.0, 1.0, 0.0) self.rotationy += self.rotation_incy # use our shader program and enable vertex loading glUseProgram(self.shader_program.program) glEnableClientState(GL_VERTEX_ARRAY) glEnableClientState(GL_COLOR_ARRAY) # render the triangles into a virtual buffer object self.vbuffer.bind() glVertexPointer(3, GL_FLOAT, 24, self.vbuffer) glColorPointer(3, GL_FLOAT, 24, self.vbuffer + 12) glDrawArrays(GL_TRIANGLES, 0, len(self.vbuffer)) self.vbuffer.unbind() #restore opengl to our previous state glDisableClientState(GL_COLOR_ARRAY) glDisableClientState(GL_VERTEX_ARRAY) shaders.glUseProgram(0) def draw(self): glEnable(GL_DEPTH_TEST) glClearDepth(1.0) glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) glLoadIdentity() if self.mode == 'vbo test cube': self.draw_test() if self.mode == 'vbo per cube': self.draw_vbo_per_cube() if self.mode == 'vbo all cubes': self.draw_vbo_all_cubes() if __name__ == '__main__': glexample = scene() GLib.threads_init() Gdk.threads_init() Gdk.threads_enter() Gtk.main() Gdk.threads_leave() #+END_SRC The file below is a simple helper to reduce the size of the files, it contains the shader and a point and cube class used in the main program above. #+BEGIN_SRC python :tangle helper.py import numpy from numpy import array from OpenGL.GL import * from OpenGL.GL import shaders from OpenGL.arrays import vbo from OpenGL._bytes import bytes, _NULL_8_BYTE def compileShader( source, shaderType ): """Compile shader source of given type source -- GLSL source-code for the shader shaderType -- GLenum GL_VERTEX_SHADER, GL_FRAGMENT_SHADER, etc, returns GLuint compiled shader reference raises RuntimeError when a compilation failure occurs """ if isinstance(source, str): source = [source] elif isinstance(source, bytes): source = [source.decode('utf-8')] shader = glCreateShader(shaderType) glShaderSource(shader, source) glCompileShader(shader) result = glGetShaderiv(shader, GL_COMPILE_STATUS) if not(result): # TODO: this will be wrong if the user has # disabled traditional unpacking array support. raise RuntimeError( """Shader compile failure (%s): %s"""%( result, glGetShaderInfoLog( shader ), ), source, shaderType, ) return shader class shader: vertex = """#version 120 //attributes in values attribute vec3 inPosition; attribute vec3 inColor; //varying sending to fragment shader varying vec4 outColor; void main(){ vec4 fragmentPos = gl_ModelViewMatrix * gl_Vertex; gl_Position = (gl_ProjectionMatrix * fragmentPos); outColor = vec4(gl_Color.rgb, 1); }""" fragment = """#version 120 varying vec4 outColor; void main(){ gl_FragColor = outColor; }""" program = None def compile(self): self.program = shaders.compileProgram( compileShader(self.vertex, GL_VERTEX_SHADER), compileShader(self.fragment, GL_FRAGMENT_SHADER),) class point: __slots__ = ['x', 'y', 'z', 'xyz', 'vertex'] def __init__(self, p, c=(1, 0, 0)): """ Position in 3d space as a tuple or list, and colour in tuple or list format""" self.x, self.y, self.z = p self.vertex = array([self.x, self.y, self.z, c[0], c[1], c[2]], 'f') class cube: def __init__(self, p1, color, size=0.5): self.color = array([1, 0, 0], 'f') #self.xyz = p1 self.points = ( point((p1[0] - size, p1[1] + size, p1[2] - size), (color)), point((p1[0] - size, p1[1] + size, p1[2] + size), (color)), point((p1[0] + size, p1[1] + size, p1[2] + size), (color)), point((p1[0] + size, p1[1] + size, p1[2] - size), (color)), point((p1[0] - size, p1[1] - size, p1[2] - size), (color)), point((p1[0] - size, p1[1] - size, p1[2] + size), (color)), point((p1[0] + size, p1[1] - size, p1[2] + size), (color)), point((p1[0] + size, p1[1] - size, p1[2] - size), (color)), ) self.vbuffer = vbo.VBO(array(self.get_data(), 'f')) self.vbuffer_size = len(self.get_data()) def bind(self): self.vbuffer.bind() def unbind(self): self.vbuffer.unbind() def get_data(self): return ( self.points[0].vertex, self.points[2].vertex, self.points[1].vertex, self.points[0].vertex, self.points[3].vertex, self.points[2].vertex, self.points[0].vertex, self.points[1].vertex, self.points[5].vertex, self.points[0].vertex, self.points[5].vertex, self.points[4].vertex, self.points[0].vertex, self.points[7].vertex, self.points[3].vertex, self.points[0].vertex, self.points[4].vertex, self.points[7].vertex, self.points[6].vertex, self.points[2].vertex, self.points[3].vertex, self.points[6].vertex, self.points[3].vertex, self.points[7].vertex, self.points[6].vertex, self.points[1].vertex, self.points[2].vertex, self.points[6].vertex, self.points[5].vertex, self.points[1].vertex, self.points[6].vertex, self.points[4].vertex, self.points[5].vertex, self.points[6].vertex, self.points[7].vertex, self.points[4].vertex, ) class cube: def __init__(self, p1, color, size=0.5): self.color = array([1, 0, 0], 'f') #self.xyz = p1 self.points = ( point((p1[0] - size, p1[1] + size, p1[2] - size), (color)), point((p1[0] - size, p1[1] + size, p1[2] + size), (color)), point((p1[0] + size, p1[1] + size, p1[2] + size), (color)), point((p1[0] + size, p1[1] + size, p1[2] - size), (color)), point((p1[0] - size, p1[1] - size, p1[2] - size), (color)), point((p1[0] - size, p1[1] - size, p1[2] + size), (color)), point((p1[0] + size, p1[1] - size, p1[2] + size), (color)), point((p1[0] + size, p1[1] - size, p1[2] - size), (color)), ) self.vbuffer = vbo.VBO(array(self.get_data(), 'f')) self.vbuffer_size = len(self.get_data()) def bind(self): self.vbuffer.bind() def unbind(self): self.vbuffer.unbind() def get_data(self): return ( self.points[0].vertex, self.points[2].vertex, self.points[1].vertex, self.points[0].vertex, self.points[3].vertex, self.points[2].vertex, self.points[0].vertex, self.points[1].vertex, self.points[5].vertex, self.points[0].vertex, self.points[5].vertex, self.points[4].vertex, self.points[0].vertex, self.points[7].vertex, self.points[3].vertex, self.points[0].vertex, self.points[4].vertex, self.points[7].vertex, self.points[6].vertex, self.points[2].vertex, self.points[3].vertex, self.points[6].vertex, self.points[3].vertex, self.points[7].vertex, self.points[6].vertex, self.points[1].vertex, self.points[2].vertex, self.points[6].vertex, self.points[5].vertex, self.points[1].vertex, self.points[6].vertex, self.points[4].vertex, self.points[5].vertex, self.points[6].vertex, self.points[7].vertex, self.points[4].vertex, ) #+END_SRC